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NOMENCLATURE 

a, thermal diffusivity; 
AI, constant; 

t: 
= Ud/h, Biot number; 

& 
half of plate-distance; 
dimensionless heat flux density at the walls 
(13); 

Pe, umdja, P&let number; 
4, h=eat flux density at the walls; 

Zb, 
volumetric heat-generation rate; 
specific volumetric heat-generation rate; 

‘;; 
time; 
fluid temperature; 

To, inlet and initial fluid temperature; 
TF, temperature of the fluid outside the walls; 
u, fluid velocity; 
am. mean fluid velocity; 
u, heat-transfer coefficient; 
& longitudinal co-ordinate; 
2, transverse co-ordinate. 

Greek symbols 
a#, 8, yi, constants; 
7, = (2/3Pe)(x/d), dimensionless longitudina 

co-ordinate; 
% = (T - To)/(TF - TO), dimensionless fluid 

temperatures; 
A, heat conductivity; 
A, = Qcd2/h, dimensionless specilic volumetric 

heat generation rate; 
5, = z/d, dimensionless transverse co-ordinate; 

2, 
dimensionless time; 
dimensionless fluid temperature with null 
heat generation. 

INTRODUCTION 

IN PREVIOUS papers [l-4] we considered some problems 
related to the laminar flow of fluids with a volumetric 
rate of heat generation linearly dependent on the local 
temperature. 

In paper [l] steady-state temperature profiles with para- 
bolic and piston flow in circular tubes and tixed wall 
temperature are given. In [3] the problem is extended to 
non-Newtonian fluids following the power law; heat 
transfer is also considered. Paper [2] examines the 

unsteady state in circular tubes with piston flow when, 
starting from an arbitrary temperature distribution, the 
temperature at which the heat-generation rate becomes 
null, is established in the inlet section and on the wall 
of the duct. Lastly, paper [4] considers a countercurrent 
heat exchanger with heat generation in the inner fluid; 
temperatures are considered only axially variable, the 
other usual assumptions also being made. 

In this communication the previous researches are 
extended to consider the transient heat transfer in fluids 
flowing laminarly in a parallel plate channel. The transient 
conditions are determined, starting from isothermal 
conditions with a null heat-generation rate, and giving a 
step change in the wall temperature or in the temperature 
of the fluid outside the walls. 

The analogous problem for fluids flowing in circular 
tubes is developed by di Federico [5].* 

MATHEMATICAL TREATMENT 

As in the previous papers the following assumptions 
are made: Fourier’s law is valid; the physical properties 
of the fluid are constant; the electromagnetic, nuclear and 
radioactive energies, the viscous dissipations and the 
axial conduction of heat are negligible; the heat-genera- 
tion rate depends linearly on the local temperature: 

Q = Qo(T- To). (1) 

The considered motion is the fully developed laminar 
flow of a Newtonian fluid between the rigid planes 
z = id. Let x be the co-ordinate in the direction of 
motion, while none of the quantities are dependent on the 
y co-ordinate; thus the velocity is given by: 

a+,[1 - @I. 

* The references on heat transfer in heat generating 
fluids are discussed in a previous paper [3]. Recently 
Sparrow, Novotny and Lin [6] have studied the heat 
transfer in laminar flow in a parallel-plate channel 
for steady state conditions and heat-generation rate 
depending on space variables, while the analogous 
problem in the entrance region of a parallel-plate 
channel is analysed by Novotny and Eckert [7J. 
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Introducing dimensionless variables, the energy equa- 
tion is: 

The follo~ng boundary conditions are considered: 

@(O, ?, 0 = @(T, 0, 5) = 0 (4) 

To state condition (5), a constant heat-transfer co- 
efficient U is assumed to give the heat transfer from the 
walls to the fluid outside the channel, aIso with unsteady 
conditions. 

Condition (5) represents a step in the temperature of 
the fluid outside the walls of the channel; when 3 = ~0, 
it corresponds to a step in the temperature of the walls. 

From paper [S] we see that the solution of equation (3) 
with boundary conditions (4) and (5) may be obtained 
from the solution for the case without heat generation 
having the same boundary conditions stating: 

8 = Q exp I.471 - A _I A exp [LIT] d7 (6) 

where 52 is the solution of equation (3) when n = 0 and 
with boundary conditions (4) and (5). 

The solution is now developed considering the approxi- 
mate temperature distribution that may be obtained from 
the steady state distribution (still with R = 0) following 
the method developed by Siegel [9] for B = to. With this 
method the solution is obtained as a series expansion 
about the steady-state condition and with the approxima- 
tion that the transient solution is only required to satisfy 
an integrated form of the energy equation, while it will 
exactly satisfy the equation in differential form at very 
large times. The form of the solution is: 

o...a-I 71...cc 
R = 1 - 2 &P(E) exp I-WI - C ArrpptS) exp i--&4 

6 

where n is such that: 

yn-1 q ==z 7 s ynr) (8) 

with: 
yn = %&In (9) 

The constants A<, af and the functions 9% are those of 
steady state solution, while the constants /3r are given by 
the relation : 

For the case B = a0 the development of Siegel 191 is 
considered. For the case B f co we apply Siegel’s method 
to the steady-state solution given by van der Does de 
Bye and Schenk [lo]. 

Introducing equation (7) in (6) and considering in the 
integration that n is a discontinuous function of 5, one 

obtains : 
0 4 . . I 0 . ..w- 1 

8=1+ 
c 

n- Apt - 
f% - ff c 

&- Aqi 
8s - A 

I 1 
n...oo 

exp [(A - Bdrwl - ~~$.%a 
i I (11) 

with n defined by relation (8). 
From the previous equation it is obvious that oni.v fov 

A < ,30 is it possible to get a steady state. The steady-state 
solution IS given by equation (11) with n = to. 

When B = co, considering the five-term approxima- 
tion given by Siegel, it is: 

0...4 0...4 

@ = 1 + ~&A~bi5coS!Zit2!!~ 

i 5 

0 . ..n-1 

- 
c 

p&j exp @I - &hd . 
< 

1...4 

5 J 
IIaving thus obtained the temperature distribution, it is 

easy to calculate the heat transferred at the walls. The 
dimensionless parameter: 

is considered. For B # co, H may be calculated intro- 
ducing equation (11) in equation (5). For B = ~0, 
instead, H is calculated applying Fourier’s law. Thus, 
from Siegel’s five-term approximation, we have: 

i 5 

o...n-_l 

- 2 -j& ev [(A 
I 

1...4 

2 
b&j + l)j-l 

I 
5 
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Table 1 
-- 

i Qi Bf V A i 
B=l B= 10 B=l B= 10 B=l B= 10 B=l B= 10 

0 1GOOO 2408 1 0.738 1.992 1.355 1.209 1.088 1.183 
1 21.6802 29.1341 2549 8.099 8.507 3.598 -0.117 - 0.266 
2 73.3044 86.5365 5.195 16.903 14.111 5.120 0038 0.132 

NUMERICAL EXAMPLES 

For the five-term approximation relative to the case of 
fixed-wall temperature (B = 03) the necessary numerical 
values are given in Siegel’s paper [9]. Next, cases B = 1 
and B = 10 are considered, taking the numerical values 
for a three-term approximation of the steady-state 
solutions from [lo]. The values of j31 and yi calculated 
from (10) and (9) are given in Table 1 where the values of 
al and At are also reported. 

The obtained solutions are such that, for 0 d T =G ~07, 
His a function of 7 only: this function is given in Fig. 1 
for cases n = 0 and B = co ; 10; 1. Case n = 1 is 
considered in Fig. 2 for B = co and B = 10 (when 
B = 1 is /IO -c A). The heat is first transferred by the walls 
to the fluid flowing in the channel and, because of the 
resistance l/B, the heat flux is smaller for B = 10. 
Successively the heat transfer diminishes, but this di- 
minution is larger for B = co, because of the rise in the 
fluid temperature due to the larger heat flux from the 
surroundings to the fluid and the consequent greater heat 
generation. Then the heat transfer inverts, going from 
the fluid to the walls. At high time values the heat 
transferred to the walls is greater for B = to, but this is 
not a general case. Indeed from the same Fig. 2, where the 
case of A = 0.25, B = cc and B = 1 is also considered, 
we remark that at high time values the heat transferred 
at the walls is larger for B = 1. This may be explained 
considering that, for B = 1. the smaller heat transfer to 
the walls determined a rise in the fluid temperature and, 
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FIG. 1. Heat flux density at the walls vs. time 
(0 d 7 < ~07) for II = 0. 

0 

Fto. 2. Heat flux density at the walls vs. time(0 < 7 < ~07) for _4 = 0.25 and A = 1. 
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FIG. 3. Heat flux density at the walls vs. time at given 
values of longitudinal co-ordinate for A = 1. 

consequently, an increase in heat generation, until the 
heat transfer also becomes greater than for B = 03. 
Obviously the establishment at high time values of one or 
the other situation depends on the values of B. 

Figure 3 gives the dimensionless heat flux H for n = 1 
and, respectively, B = co and B = 10 at several axial 
co-ordinates 7. We remark that, at a given 1, the heat 
transfer is no more time dependent after a finite time; 
this is due to the finite number of terms considered in 

calculating the summations, even if the time-dependent 
terms neglected give practically negligible contributions. 
The small number of terms considered makes a poor 
approximation of the results obtained at the smallest 7 
and 7, also because the series we must consider in order 
to determine heat transfer do not have terms with altern- 
ate signs. 
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